首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32875篇
  免费   3001篇
  国内免费   1457篇
电工技术   1827篇
技术理论   3篇
综合类   2143篇
化学工业   5451篇
金属工艺   2183篇
机械仪表   2138篇
建筑科学   2849篇
矿业工程   925篇
能源动力   858篇
轻工业   2437篇
水利工程   601篇
石油天然气   1858篇
武器工业   275篇
无线电   3589篇
一般工业技术   4055篇
冶金工业   1364篇
原子能技术   350篇
自动化技术   4427篇
  2024年   59篇
  2023年   507篇
  2022年   894篇
  2021年   1394篇
  2020年   1126篇
  2019年   837篇
  2018年   992篇
  2017年   1074篇
  2016年   981篇
  2015年   1330篇
  2014年   1552篇
  2013年   1921篇
  2012年   2100篇
  2011年   2269篇
  2010年   2047篇
  2009年   1855篇
  2008年   1797篇
  2007年   1794篇
  2006年   1742篇
  2005年   1596篇
  2004年   1132篇
  2003年   975篇
  2002年   973篇
  2001年   755篇
  2000年   890篇
  1999年   894篇
  1998年   743篇
  1997年   580篇
  1996年   580篇
  1995年   460篇
  1994年   360篇
  1993年   281篇
  1992年   239篇
  1991年   156篇
  1990年   103篇
  1989年   100篇
  1988年   81篇
  1987年   44篇
  1986年   43篇
  1985年   15篇
  1984年   18篇
  1983年   11篇
  1982年   10篇
  1981年   7篇
  1980年   11篇
  1979年   1篇
  1978年   1篇
  1970年   1篇
  1969年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
针对呼吸道系统疾病与大气 PM2:5、 SO2 浓度序列的相关性特征, 应用多重分形消除趋势波动分析法 (MF-DCCA), 对张家界市永定区呼吸道系统疾病患病人数与大气 PM2:5、 SO2 浓度序列进行了研究。结果发现该地区 呼吸道系统疾病患病人数与大气 PM2:5、 SO2 浓度的相关性具有长期持续特征和多重分形特征。随后对它们相关性 多重分形特征的动力来源进行了分析, 通过随机重排和相位随机处理, 结果表明在不同时间尺度上的长期持续性影响 是其主要动力来源。进一步研究发现该地区呼吸道系统疾病与大气 PM2:5、 SO2 浓度序列的相关性在四个季节均具 有长期持续性的多重分形特征, 且夏季多重分形特征相对强于其他季节。  相似文献   
2.
Covalent organic frameworks (COFs) show advantageous characteristics, such as an ordered pore structure and a large surface area for gas storage and separation, energy storage, catalysis, and molecular separation. However, COFs usually exist as difficult-to-process powders, and preparing continuous, robust, flexible, foldable, and rollable COF membranes is still a challenge. Herein, such COF membranes with fiber morphology for the first time prepared via a newly introduced template-assisted framework process are reported. This method uses electrospun porous polymer membranes as a sacrificial large dimension template for making self-standing COF membranes. The porous COF fiber membranes, besides having high crystallinity, also show a large surface area (1153 m2 g−1), good mechanical stability, excellent thermal stability, and flexibility. This study opens up the possibility of preparation of large dimension COF membranes and their derivatives in a simple way and hence shows promise in technical applications in separation, catalysis, and energy in the future.  相似文献   
3.
Porous g-C3N4 nanosheets (PCN) were prepared by the nickel-assisted one-step thermal polymerization method.Hydrogen (H2) which was produced by the reaction between nickel (Ni) foam and ammonia (NH3) defined the structure and properties of PCN.During the formation of PCN,the participation of H2 not only enhanced the spacing between layers but also boosted the specific surface area that more active sites were exposed.Additionally,H2 promoted pores formation in the nanosheets,which was beneficial to the transfer of photons through lamellar structure and improved the absorption efficiency of visible light.Remarkably,the obtained PCN possessed better Cr(Ⅵ) photocatalytic reduction efficiency than pure g-C3N4.The reaction rate constant (k) of PCN (0.013 min-1) was approximately twice that of bare g-C3N4 (0.007 min-1).Furthermore,the effects of original pH and concentration of Cr(Ⅵ)-containing solution on removal efficiency of Cr(Ⅵ) were explored.A possible photocatalytic mechanism was proposed based on the experiments of radical scavengers and photoelectrochemical characterizations.  相似文献   
4.
Recently, the successful synthesis of wafer-scale single-crystal graphene, hexagonal boron nitride (hBN), and MoS2 on transition metal surfaces with step edges boosted the research interests in synthesizing wafer-scale 2D single crystals on high-index substrate surfaces. Here, using hBN growth on high-index Cu surfaces as an example, a systematic theoretical study to understand the epitaxial growth of 2D materials on various high-index surfaces is performed. It is revealed that hBN orientation on a high-index surface is highly dependent on the alignment of the step edges of the surface as well as the surface roughness. On an ideal high-index surface, well-aligned hBN islands can be easily achieved, whereas curved step edges on a rough surface can lead to the alignment of hBN along with different directions. This study shows that high-index surfaces with a large step density are robust for templating the epitaxial growth of 2D single crystals due to their large tolerance for surface roughness and provides a general guideline for the epitaxial growth of various 2D single crystals.  相似文献   
5.
Wire arc additive manufacturing(WAAM)has been investigated to deposit large-scale metal parts due to its high deposition efficiency and low material cost.However,in the process of automatically manufacturing the high-quality metal parts by WAAM,several problems about the heat build-up,the deposit-path optimization,and the stability of the process parameters need to be well addressed.To overcome these issues,a new WAAM method based on the double electrode micro plasma arc welding(DE-MPAW)was designed.The circuit principles of different metal-transfer models in the DE-MPAW deposition process were analyzed theoretically.The effects between the parameters,wire feed rate and torch stand-off distance,in the process of WAAM were investigated experimentally.In addition,a real-time DE-MPAW control system was developed to optimize and stabilize the deposition process by self-adaptively changing the wire feed rate and torch stand-off distance.Finally,a series of tests were performed to evaluate the con-trol system's performance.The results show that the capability against interferences in the process of WAAM has been enhanced by this self-adaptive adjustment system.Further,the deposition paths about the metal part's layer heights in WAAM are simplified.Finally,the appearance of the WAAM-deposited metal layers is also improved with the use of the control system.  相似文献   
6.
柔性夹钳因具有微/纳精密操作能力, 常应用于微操作系统中, 但因抓爪无法提供恒定输出力或恒力范围小, 容易造成操作对象的损伤或脱落。根据放大模块与常力模块串联的结构形式, 设计了一种具有常力特性的柔性夹钳。基于伪刚体法, 建立放大模块中桥式机构与杠杆机构的刚度和放大率数学模型, 通过对倾斜导向梁进行分析, 得到常力模块的力-位移关系式, 计算出恒定输出力为42.5 N, 输出范围为370 μm。最后, 结合不同柔顺梁的结构参数, 运用MATLAB仿真探究了各关键参数对常力特性的影响。研究结果可为常力柔性夹钳的构型设计和分析提供一定的理论支撑。  相似文献   
7.
Radicals are closely related to human life and health and have been widely used in biology, chemistry, functional materials, etc. However, the high reactivity, disorder, and short half-lives limit their wide applications. Therefore, it remains a great challenge to prepare stable and ordered radicals. Herein, radicals are prepared with protective umbrellas (diethylmethyleneamine, DEMA) that are integrated on the surface of 2D layered materials to isolate water and oxygen and enhance the stability of radicals. Taking 2D black phosphorus (BP) as an example: triethylamine reacts with dichloromethane to form quaternary ammonium salts with further Hoffmann elimination to produce DEMA radicals that could react with one electron of a lone pair electrons in P on the surface of BP to produce P radicals, which shows a prolonged half-life of 21 days at room temperature. First-principle calculations and electron paramagnetic resonance fitting confirm that the steric hindrance constructed by dense DEMA passivation layer acts as a protective umbrella and the 2D coupling of P radicals and other P atoms in 2D BP plane to enhance the stability and strong superexchange interaction of P radicals. Furthermore, it is a general strategy to produce stable radicals integrated on the 2D plane.  相似文献   
8.
The confinement of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) in a stabilized inorganic glass matrix is a new strategy for improving their long-term stability and promoting their applications in the optoelectronic field. Here, in situ nanocrystallization strategy is developed to precipitate CsPbBr3?xIx NCs with arbitrary I/Br ratio among an elaborately designed GeS2–Sb2S3-based chalcogenide glass matrix. Spherical CsPbBr3?xIx NCs are homogeneously distributed in the glass matrix after thermal treatment. The photoluminescence (PL) spectra show that the emission peaks of CsPbBr3?xIx NCs can be tuned from 570 nm to 722 nm with the replacement of Br by I. The fs transient absorption (TA) spectra reveal that there exists some structural defects in the NCs, leading to short PL decay life. This work would shed light on confining CsPbX3 NCs into glassy matrices, facilitating their future applications in photoelectronic fields.  相似文献   
9.
As an anticancer drugs, arsenic trioxide (ATO) has been certified to efficiently treat refractory acute promyelocytic leukemia (APL). Unfortunately it suffers from limited therapeutic potency for solid tumors due to its in vivo restricted administration dose and rapid renal clearance. Herein, distinct 2D arsenic-phosphorus (AsP) nanosheets are engineered by adopting an alloy strategy followed by exfoliation, which can confine toxic arsenic into AsP crystals, thus significantly improving the biosafety and biocompatibility of arsenic-based chemotherapeutic drugs. Of particular note, the high light absorption and strong photothermal-conversion efficiency (37.6%) in the second near infrared biowindow (NIR-II) of AsP nanosheets not only endow them with desirable contrast-enhanced photoacoustic imaging properties, but also achieve efficient local tumor hyperthermia, which further synergistically triggers the in-situ transformation from low toxic/nontoxic AsP crystals into highly toxic arsenic species, exerting a strong arsenic-mediated antineoplastic effect. Both in vitro and in vivo data verify the synergy between photonic therapy in NIR-II and enhanced chemotherapy as enabled by AsP nanosheets, paving the way for efficient nanomedicine-enabled arsenic-based chemotherapeutic tumor treatment.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号